
lha

lha ii

COLLABORATORS

TITLE :

lha

ACTION NAME DATE SIGNATURE

WRITTEN BY July 16, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

lha iii

Contents

1 lha 1

1.1 index . 1

1.2 LhA User’s Guide . 1

1.3 Introduction . 2

1.4 About the manual . 2

1.5 System requirements . 2

1.6 Terminology . 3

1.7 LhA - what is it? . 3

1.8 What is a file archiver anyway? . 3

1.9 Compatibility and Amiga-specific features . 4

1.10 About the author, program history and future . 5

1.11 Reference guide . 5

1.12 Command line syntax . 6

1.13 Specifying options . 7

1.14 Specifying commands . 7

1.15 Specifying archives . 7

1.16 Specifying action files . 7

1.17 Home directories . 8

1.18 Recursive file collection . 9

1.19 Specifying destination directory . 10

1.20 `\@’-files . 11

1.21 LhA limitations . 11

1.22 Obsolete options . 11

1.23 Environment variables . 12

1.24 Pattern matching . 12

1.25 Exactly what is pattern matching anyway? . 13

1.26 Accepted pattern tokens . 13

1.27 Question mark (?) . 14

1.28 Star/Asterisk (*) . 14

1.29 Hash mark (#) . 14

lha iv

1.30 Square brackets ([]) . 15

1.31 Parentheses and the vertical bar . 15

1.32 Tilde (~) . 16

1.33 Percent sign (%) . 16

1.34 Apostrophe (’) . 17

1.35 National characters . 17

1.36 Commands . 17

1.37 `a’ Add files to archive . 18

1.38 `c’ Concatenate/Append archives . 18

1.39 `d’ Delete files from archive . 19

1.40 `e’ Extract files from archive . 19

1.41 `f’ Freshen files in archive . 20

1.42 `h’ Hunt for diffs arc <-> filesys . 20

1.43 `l’ List archive contents (terse) . 21

1.44 `lq’ List archive (terse-quick) . 22

1.45 `m’ Move files to archive . 22

1.46 `p’ Print files to stdout . 22

1.47 `r’ Replace files . 22

1.48 `t’ Test archive integrity . 22

1.49 `u’ Update archive . 23

1.50 `v’ List archive (verbose) . 23

1.51 `vq’ List archive (verbose-quick) . 24

1.52 `vv’ List archive (full) . 24

1.53 `x’ Extract files with path . 24

1.54 `y’ Copy archive with new options . 25

1.55 Options . 25

1.56 `-a’ (upx) Preserve file attributes . 27

1.57 `-A’ (upd) Set archive attributes . 29

1.58 `-b’ (all) Set I/O buffer size . 29

1.59 `-B’ (upd) Keep backup of archives . 29

1.60 `-c’ (all) Confirm files . 30

1.61 `-C’ (ext) Clear arc-bit on extract . 30

1.62 `-d’ (upd) Archive date=newest file . 30

1.63 `-D’ (all) Alternate progress display . 30

1.64 `-e’ (add) Archive empty directories . 31

1.65 `-E’ (ext) Touch extracted files . 31

1.66 `-f’ (all) Ignore filenotes . 31

1.67 `-F’ (all) Use fast progress display . 32

1.68 `-G’ (ext) Only extract newer files . 32

lha v

1.69 `-h’ (add) Disable homedirectories . 32

1.70 `-H’ (add) Write header level . 33

1.71 `-i’ (all) Read filelist from file . 33

1.72 `-I’ (all) Ignore LHAOPTS variable . 33

1.73 `-k’ (all) Keep partial files . 34

1.74 `-K’ (move) Kill empty directories . 34

1.75 `-l’ (ALL) Make filenames lowercase . 34

1.76 `-L’ (ALL) Create filelist . 35

1.77 `-m’ (ALL) No messages for query . 35

1.78 `-M’ (ext) No autoshow files . 35

1.79 `-n’ (upx) No byte progress indicator . 36

1.80 `-N’ (all) No progress indicator . 36

1.81 `-o’ (add) Only add files with same or newer date . 36

1.82 `-O’ (add) Only add files with same or older date . 36

1.83 `-p’ (ALL) Pause after loading . 36

1.84 `-P’ (ALL) Set task priority . 37

1.85 `-q’ (ALL) Be quiet . 37

1.86 `-Q’ (ALL) Alternate option set . 37

1.87 `-r’ (add) Collect action files recursively . 37

1.88 `-R’ (ALL) Collect archive files recursively . 38

1.89 `-s’ (add) Add files with a-flag unset . 38

1.90 `-S’ (add) Set A-flag on archived files . 39

1.91 `-t’ (ext) Only new files . 39

1.92 `-T’ (upx) New and newer files . 39

1.93 `-u’ (ALL) Make filenames uppercase . 39

1.94 `-V’ (all) Enable multi-volume archives . 40

1.95 `-w’ (upd) Set work directory . 40

1.96 `-W’ (add) Exclude filenames . 40

1.97 `-x’ (all) Preserve and use pathnames . 40

1.98 `-X’ (ALL) Do not append suffix . 41

1.99 `-y’ (all) Always append suffix . 41

1.100`-Y’ (add) Store big files with ratio . 41

1.101`-z’ (add) Do not compress files . 42

1.102`-Z’ (add) Compress archives . 42

1.103`-0’ (add) Use LhArc 1.x compression . 42

1.104`-2’ (add) Use LhA compression (-lh5-) . 42

1.105`-3’ (add) Use LhA compression (-lh6-) . 43

1.106`-Qa’ (all) Use simple console I/O . 43

1.107`-Qb’ (ext) Test archive before extract . 43

lha vi

1.108`-Qd’ (ext) Delete autoshow files . 43

1.109`-Qh’ (add) Set Huffman buffer size . 44

1.110`-Qm’ (all) Use filename ’munging’ on progress output . 44

1.111`-Qn’ (all) Set national character mode . 45

1.112`-Qo’ (all) Ignore options after command . 45

1.113`-Qp’ (move) Ignore delete protection flag . 45

1.114`-Qq’ (add) Quick add . 45

1.115`-Qr’ (add) Skip datestamp check . 45

1.116`-Qv’ (all) Set multivolume arc devices . 46

1.117`-Qw’ (all) Disable wildcards . 46

1.118Autoshow files . 46

1.119Residentability . 46

1.120Multi-volume archives . 47

1.121Multivolume file names . 47

1.122Making backups with multivolume archives . 47

1.123Incremental backups . 48

1.124Extracting from multivolume archives . 48

1.125Restoring incremental backups . 48

1.126Listing multivolume archive contents . 48

1.127Updating multivolume archives . 49

1.128Interrupting multivolume archiving . 49

1.129A bit about headers . 49

1.130Some tips for archiving efficiently . 49

1.131Using as little memory as possible . 50

1.132Creating fully MS-DOS compatible archives . 50

1.133Recovering data from corrupt archives . 50

1.134Acknowledgements . 51

1.135History . 52

1.136TODO . 54

lha 1 / 54

Chapter 1

lha

1.1 index

1 Introduction

2 Reference guide

3 Acknowledgements

4 History

5 TODO

1.2 LhA User’s Guide

April 1999

######
##
###
#######
##
##
####### ### ### ### ###

Written by Stefan Boberg

lha 2 / 54

Currently Maintained by Jim Cooper

Copyright © 1991-94 by Stefan Boberg
Copyright © 1998,1999 by Jim Cooper and David Tritscher

All rights reserved

Jim Cooper <jamie_c@bellsouth.net>
David Tritscher <petrol@rabble.uow.edu.au>

1.3 Introduction

LhA is a powerful archiver for the Amiga computer. It is ←↩
fully

compatible with LHA for MSDOS systems and LhArc for MSDOS, Amiga and

*NIX. It is also compatible with LhArcA, LZ and LhArc for the Amiga.
LhA sports fast compression and decompression and has several commands
and options not found in any other currently available archiver for the
Amiga.

1.1 About the manual

1.2 System requirements

1.4 Terminology

1.5 LhA - what is it?

1.6 What is a file archiver anyway?

1.8 Compatibility and Amiga-specific features

1.9 About the author, program history and future

1.4 About the manual

The manual is divided into two main sections, the first section (this
one) contains miscellaneous information related to the program. The
second section is a reference section, where all commands and options
are explained thoroughly.

1.5 System requirements

LhA will run on any Amiga system with at least 512KB RAM and one
diskdrive, though 1MB RAM and two diskdrives or harddrive is recommended
to get the most out of LhA. LhA will run on any KickStart from version
2.0 and up.

lha 3 / 54

1.6 Terminology

ARCHIVE - An archive is a file containing one or more files in a
compressed or non-compressed state and related information like file
names, last modification date/time, filenotes etc.

COMPRESSION - The process of encoding redundant information into data
requiring less storage space. There are a multitude of ways you can do
this in. LhA uses a modified version of Lempel-Ziv compression with
block-adaptive Huffman coding and a dictionary size of up to 32768
characters.

COMPRESSION RATIO - The compression ratio figures reported by LhA are
calculated as follows: ratio = (1 - (CompressedSize) / (OriginalSize))

* 100. E.g. what percentage of the file was GAINED. Other archivers
may use other methods. LHA and ARJ for MS-DOS, for example, calculate
the ratio as: ratio = (CompressedSize) / (OriginalSize), e.g. how
large the compressed file is compared to the original file. (MSDOSratio
= 1-(ADOSratio/100)). The higher the LhA compression ratio, the better
the compression. Most Amiga archivers use the same ratio calculation
method.

CRC - CRC stands for ‘Cyclic Redundancy Check’. It is a relatively
sophisticated method of checking data integrity. The version used in
LhA is a 16-bit CRC.

EXTRACTION or DECOMPRESSION - The process of recreating the exact
information that was previously compressed (file contents, modification
date, filenotes, protection flags, directory structure etc.)

SELF-EXTRACTION MODULE (SFX-Module) - This is an archive that is an
executable file capable of extracting self-contained files.

1.7 LhA - what is it?

The primary goal of LhA is to provide the Amiga community with a fast,
efficient and reliable file archiver. LhA creates and processes archive
files with the ’.lha’ suffix, and is fully compatible with both MSDOS
LhArc and MSDOS LhA, as well as the *NIX LhA, and older LhA/LhArc
archivers on most platforms. It handles both the old LhArc-style
compression (-lh1-, -lh0-) and LhA-style (-lh6-, -lh5-, -lh4-).

1.8 What is a file archiver anyway?

A file archiver, as the name implies, archives files. It collects the
files you specify and stores them all in a single archive-file. Almost
all file archivers (including LhA) also compress the files before
putting them in the archive-file, so that they occupy less diskspace.
When you wish to retrieve some file from the archive, the archiver
decompresses the file and restores its file attributes (Last
modification date, time, file comments, protection status etc.). A file
archiver can usually also process archive files in different ways, for

lha 4 / 54

instance delete files, freshen files, print files etc. See the
’ARCHIVER COMMANDS’ section of this manual for an explanation of the
different actions LhA is capable of performing.

The most common use for a file archiver is for transferring several
related files via modem. It would be a very tedious and cumbersome task
to transfer, for instance, every single source file of a big project
separately, so why not put them all into one single file? This is where
the file archiver comes in; we simply feed the archiver all the files we
wish to transmit, then transfer the single archive-file the archiver
then creates! After the transfer the receiver just has to use the
archiver to extract all files from the archive-file onto his/her
harddisk (or floppy). Also, if the files were compressed by the
archiver, it would take less time to transfer the files as well, which
means the phonecall will cost us less. There are of course other uses
for a file archiver, you can use it as a harddisk-backup program for
example (if you have another harddisk partition to put the archive file
on..), and you can use it to stuff away files you don’t use very often,
and then when you want to use them you simply extract the files from the
archive, and then delete them when you’re finished (saves disk space).
Some people use LhA to make automatic backups of source code for various
projects.

The file compression methods vary from very simple, less effective, and
fast (Run-Length Encoding, RLE, for instance), to complex, effective and
relatively time-consuming methods (Lempel-Ziv-Huffman, LZHUF, as used in
LhA). The method used in LZH-Archivers (LZHUF) is to date probably the
best algorithm used in an archiver. There are other similar methods,
like ZIP, but they are not as good. Even though the files become
smaller you don’t lose any information when compressing them, the
information is just stored in a different way. Basically, redundant
(repeated) information is replaced with a pointer to some other part of
the file, where this information is located. For example in this text
the word ’archive’ appears at several places, this is an example of
redundant data. Simply put, if a file compressor was to compress this
file it would let the first occurence of ’archive’ remain unchanged, and
then it would replace all other occurences of ’archive’ with a pointer
to the first one. When decompressing the file, the archiver uses these
pointers to restore the file to its original state.

Files which have already been compressed with one technique can
generally not be compressed any further by feeding them to the same file
compressing program again (If that had been possible, modem transfers
would have been a lot cheaper :), since the redundant information has
already been eliminated. It is possible though to compress files output
by certain compressors (RunLength-Encoders for example) further by
feeding them to a program that uses another method (like LZHUF), since
they eliminate different kinds of redundant information.

1.9 Compatibility and Amiga-specific features

LhA is aimed at full compatibility with LHA V2.55 for MS-DOS, which is
an improvement of the original LhArc V1.13. LhA is also compatible with
LhArc, LhArcA and LZ for the Amiga computer. However, LhArc and LhArcA
cannot process any archives with headers of level 1 or 2, or files

lha 5 / 54

compressed with the new LHA compression types (-lh5- or -lh6-). LZ 1.92
cannot process archives with headers of level 2, or using the newest
compression type (-lh6-). LHA V2.55 can process all archives created
by LhA for the Amiga.

1.10 About the author, program history and future

(Stefan’s original data)

I, Stefan Boberg - the author of the programs in the LhA family, am 19
years old and currently studying ‘applied physics and electrical
engineering’, first year, at the Linköping Institute of Technology. I
started working on LhA mainly because I thought there was no real good
archiver for the Amiga, the ones that existed at the time (June 1991) I
began work on it were either too slow, had loose compression ratios or
were bugged/crippled so that they could not do what I needed an archiver
to do. I use archivers mainly to back up sources for my various
programming projects automatically, and I also use it a lot to just
decompress archives from bulletin board systems and computer networks.
Another reason for doing it was to earn a little extra money, which I
badly need, being a poor student with a _small_ allowance.. :)

(Jim Cooper’s blurbage)

I, Jim Cooper, started asking Stefan about the LhA source code since he
stopped working on it long ago. He finally sent it to me, probably just
to stop my nagging! :-)

In any case, I have decided to release it to the Amiga community for
free. No more registrations necessary. This is the _complete_ version
of LhA, equivalent to the former "registered" version. I may or may not
release the source, as well, at a later date. Not decided, yet.

After v1.98, I coerced David Tritscher into helping me with the code, as
he is _quite_ good at the low-level compression routines, etc.

If you find bugs, let me know, and I’ll try to fix ’em. Maybe not
immediately, since I do have a "day job," but I’ll try to keep it
working as best I can.

Enjoy.

1.11 Reference guide

This section of the manual is intended to be used mostly as a ←↩
reference

guide when you want to know exactly how a certain option or command
works. If you haven’t used LhA before (but used other archivers), you
should at least glance through the descriptions of all the commands and
options to get an idea of what LhA can do.

lha 6 / 54

2.1 Command line syntax

2.2 Environment variables

2.3 Pattern matching

2.4 Commands

2.5 Options

2.6 Autoshow files

2.7 Residentability

2.8 Multi-volume archives

2.9 A bit about headers

2.10 Some tips for archiving efficiently

2.11 Using as little memory as possible

2.12 Creating fully MS-DOS compatible archives

2.13 Recovering data from corrupt archives

1.12 Command line syntax

The command line syntax is as follows:

LhA [-options] <Command> <Archive> [[HomeDir] FileSpec] [@file]
[destdir]

The items in square brackets are optional, and the items in angle
brackets are mandatory. Read the following sections for exact
information on the various items.

2.1.1 Specifying options

2.1.2 Specifying commands

2.1.3 Specifying archives

2.1.4 Specifying action files

2.1.5 Home directories

2.1.6 Recursive file collection

2.1.7 Specifying destination directory

2.1.8 ‘\@’-files

2.1.9 LhA limitations

lha 7 / 54

2.1.10 Obsolete options

1.13 Specifying options

Unlike other archivers, LhA lets you specify options anywhere on the
command line. The option specifier is ‘-’ (dash), any items on the
command line that begins with this character are considered to be option
switches. If you want to specify a filename or something else that
begins with a ‘-’ character, enclose the name in double quotes or use
double dashes. For example, to specify a filename of ‘-minus’, you
could write either ‘"-minus"’ or ‘--minus’.

If you write ‘-o’ the option ‘o’ is enabled regardless of its initial
state. If you want to disable an option, append a ‘0’ (zero) after the
option, like in ‘-o0’. If an option is followed by any other numeric
character than ‘0’, the option is enabled.

You can specify multiple options without having a dash in front of every
option character. An example would be ‘-ox0m’, which would enable
option ‘o’, disable option ‘x’ and enable option ‘m’. The only
exception is options taking multi-digit numeric arguments, which must be
followed by whitespace and another dash if you want to specify more
options (like in ‘-b32 -ox0m’).

1.14 Specifying commands

The first non-option argument on the command line MUST be the command
specifier. The commands are case-insensitive (‘l’ means the same thing
as ‘L’), and only the first character of the argument is considered
(except for the ‘vv’ command), so you may use verbose commands such as
‘list’ or ‘add’ instead of ‘l’ and ‘a’, respectively.

1.15 Specifying archives

The archive specification must be the second non-option argument (the
first being the command specification). In most cases you can specify a
pattern here. The exception being the ‘m’ (move files to archive)
command.

1.16 Specifying action files

The action files are specified after the archive specification. The
action file specifications may include pattern matching tokens. Note
that, as all other file specifications in LhA, action file
specifications may contain wildcards for directory names as well -
‘hd:*/*/dir/*.h’ is valid, for example.

lha 8 / 54

NOTE

If you do not specify any action files, LhA assumes
that you wish to act upon all files in the archive or
in the current directory.

1.17 Home directories

Home directories is a new concept introduced with LhA, it provides an
easy way of specifying what parts of pathnames that should be preserved
in the archive. It can also be used to simplify specifications of
mutiple files in the same directory. It is perhaps best explained with
a couple of examples:

EXAMPLE

Example 1:

lha -x a newarc dh0:files/ file1 dir1/file2 dir2/file3
dh0:files2/ *.c

This would add the following files to ‘newarc.lha’:

Added file(s) Stored as
----------------- --------------
dh0:files/file1 file1
dh0:files/dir1/file2 dir1/file2
dh0:files/dir2/file3 dir2/file3
dh0:files2/*.c *.c

Example 2:

lha -r a newarc hd:tmp/ *.c *.h hd:px/ *.s *.snd *.iff

This would add all ‘.c’ and ‘.h’ files in ‘hd:tmp’ and it’s
subdirectories, storing pathnames, but excluding the ‘hd:tmp’ part.
For instance, the file ‘hd:tmp/src/foo/arargh.c’ would be stored in
the archive with the name ‘src/foo/arargh.c’. Additionally, all ‘.s’,
‘.snd’ and ‘.iff’ files in ‘hd:px’ and its subdirectories will be
added, excluding the ‘hd:px/’ part of the name.

Homedir specifications must end in ‘/’ or ‘:’, otherwise they won’t be
recognized as such.

Homedir specifications may contain wildcards and other pattern matching
tokens.

NOTE

You are not supposed to include the home directory name
in the action file specifications after the home
directory spec. I.e. you should not enter
‘devs:printers/ devs:printers/*HP*’, but
‘devs:printers/ *HP*’ is correct.

lha 9 / 54

The home directory remains active for the rest of the
command line or until the next home directory
specification. If you want to set the home directory to
the current directory (as it is from the beginning),
use a single slash (‘/’) as a home directory
specification. This means you cannot use a single slash
to specify the parent directory, to do this you will
have to add an additional slash (‘//’ means parent
directory, ‘///’ the parent’s parent directory and so
on).

1.18 Recursive file collection

When collecting files recursively (by using the -r option with a or u
commands), action file specs are treated somewhat differently. Home
directories work the same way as usual. In recursive file collection
mode, the last node of the action file specification (i.e. the file
name part) is used as a pattern that is compared to all files in the
specified directory and its subdirectories. Some examples to hopefully
clarify the somewhat fuzzy description:

EXAMPLE

Example 1:

lha -r a myarc *

This will add all files in the current directory and its
subdirectories to ‘myarc.lha’.

Example 2:

lha -r a myarc *.c *.cpp

Will add all ‘.c’ and ‘.cpp’ files in the current directory and its
subdirectories to ‘myarc.lha’.

Example 3:

lha -r a myarc ram:work/* hd:tmp/*.c

Will add all files in ‘ram:work’ and its subdirectories - as well as
all ‘.c’ files in ‘hd:tmp’ and its subdirectories - to ‘myarc.lha’.
The full pathnames will be stored (excluding the device specification
of course).

Example 4:

lha -r a myarc ram:work/ * hd:tmp/ *.c

Will do exactly the same as example 3, but LhA will not store the
‘ram:work/’ and ‘hd:tmp/’ parts of the filenames in the archive.
(Because of the home directory specifications).

lha 10 / 54

Example 5:

lha -r a myarc ram:dir1 ram:makefile

Will archive all files in the directory ‘dir1’ and its subdirectories,
as well as the file ‘ram:makefile’.

Example 6:

lha -r a myarc ram:dir1 ram:(makefile)

Will do almost the same as example 5, but will archive ALL ‘makefile’s
in ram: and all it’s subdirectories (because of the parentheses - see
note below).

NOTE

Explicitly specified directories (explicitly = without
pattern matching) will be treated as ‘dirname/*’, i.e.
all files in the directory and it’s subdirs will be
archived. Explicitly specified files will only be
looked for in the current home directory, unless the
filename is enclosed in parentheses, in which case the
file will be looked for recursively. I have chosen to
implement it this way because LhA can then be used
better together with directory utilities such as
Browser or DirectoryOpus.

1.19 Specifying destination directory

You can optionally specify a destination directory for the files written
by the extract commands by writing the desired directory name anywhere
after the archive name on the command line. If no destination directory
is specified, LhA will use the current directory as the destination.
The destination directory specification must end in ‘:’ or ‘/’, just
like home directory specifications, or LhA would not be able to
distinguish directory names from action file specs.

EXAMPLE

‘lha x corpus ram:’ would extract the contents of ‘corpus.lzh’ to
ram:.

‘lha x project *.c dl:tmp/’ would extract the contents of
‘project.lzh’ to the ‘dl:tmp’ directory.

and so would ‘lha x project dl:tmp/ *.c’.

NOTE

You can specify a directory that does not already exist
as the destination, LhA will automatically create the
directory for you (without asking first).

lha 11 / 54

1.20 `\@’-files

‘@’-files are files that are treated as if their contents were written
on the command line. They can be used to specify files, options
commands and anything else can be specified on the command line. An
example would be the command ‘lha -r e arc.lzh *.[chas] @filelist
ram:’, which would extract all files matching ‘*.[chas]’ or the files
listed in ‘filelist’ to ram:. Carriage returns and linefeeds in
‘@’-files are treated as whitespace.

1.21 LhA limitations

LhA has been written to be as flexible as possible, but there are some
limitations that you should be aware of as a user.

o LhA pathnames are currently limited to 255 characters. If you exceed
this limit behaviour is undefined. User reports indicate that
AmigaDOS does not handle pathnames with more than 180-190 characters
properly.

o When headers of level 0 are used, filenotes may not be longer than
230-{filename length (including path)} characters. With header level
1 or 2 filenotes may be up to 255 characters (AmigaDOS currently only
supports filenotes of max 80 characters so this should not be any
problem except with exceptionally long filenames and paths).

o The number of files in an archive files are only limited by available
disk space. The size of an archive must not exceed 2.147.483.648
bytes (2 Gigabytes); LhA will get VERY confused.

o The number of arguments on the command line is only limited by
available RAM and the used shell.

o The allowed number of wildcard-matched files is only limited by
available RAM. Any number of files may be extracted or added to an
archive in one go.

o Level 2 headers must not be longer than 1024 characters, or LhA will
not be able to process them.

o Currently LhA only handles multivolume archives with a maximum of 100
volumes. If you create archives with more than this number of
volumes, behaviour is undefined.

1.22 Obsolete options

These options are still accepted by LhA, for compatibility with ←↩
older

scripts, etc., but they are ignored.

‘-1’ Use LhA compression (-lh4-)
‘-g’ Garble with password

lha 12 / 54

‘-U’ Set update interval
‘-v’ Set compression speed

-lh4- compression is no longer supported. -lh4- extraction is, and
probably always will be, supported, for compatibility with older
archives.

If you are transferring an archive to a system which doesn’t support
-lh5- or -lh6-, use the

-0
option.

As for the ‘-g’ option... it was never implemented or documented. If
you need to prevent casual access of your archives, we recommend using
PGP.

1.23 Environment variables

LhA supports both local and global environment variables. Upon startup
LhA looks for the environment variable ‘LHAOPTS’ and includes this as if
it had been typed on the command line directly after the ‘LhA’ command
name. If you don’t want to use the settings from the environment
variable, use the ‘-I’ switch.

EXAMPLE

If you set LHAOPTS to ‘-N -b64’ with the following command:

1> setenv LHAOPTS -N -b64

LhA would not display any file-progress indicator and use a
64K I/O buffer for all following invocations until the machine
is reset or LHAOPTS is changed. If you want to set some
default options that should survive reset and power off, use
the environment variable name ‘ENVARC:LHAOPTS’ instead, like
in:

1> setenv ENVARC:LHAOPTS -b64

This would cause the environment variable LHAOPTS to be set to
‘-b64’ whenever the machine is rebooted.

1.24 Pattern matching

This section describes how LhA handles pattern matching ←↩
and file

collection. For a discussion on what commands will accept file
patterns, please refer to section 2.1 (Command line syntax).

Pattern matching in LhA is always case-insensitive. (i.e. it doesn’t
matter if you write names in upper- or lowercase, ‘a’ will match both
‘a’ and ‘A’.)

lha 13 / 54

2.3.0 Exactly what is pattern matching anyway?

2.3.1 Accepted pattern tokens

2.3.2 National characters

1.25 Exactly what is pattern matching anyway?

Pattern matching is a means of specifying several files in an elegant
and relatively straightforward manner. Instead of just lining up all
the file names you would like to work on on the command line (which can
be very tedious when a lot of files are involved) you can use a
technique called ‘pattern matching’. With this technique you - as the
name implies - use the fact that the names of the files you wish to work
on often share certain characteristics. For example, the names of files
containing C-source almost always end in ‘.c’, so if you would like to
add all C-source files in the current directory you could take advantage
of this fact by specifying a pattern to that matches these files (in
this case such a pattern would be ‘*.c’). Exactly how these patterns
are built up are explained in section 2.3.1 forward. Also read the
sections explaining ‘how to specify action files’ and ‘how to specify
archive files’.

1.26 Accepted pattern tokens

LhA accepts all valid KickStart 2.x+ pattern tokens.

In the explanations that follow, the term ‘expression’ means either a
single token or character (such as ‘x’ or ‘?’), or an alternation (such
as ‘(ab|cd|ef)’), or a character class (such as ‘[a-z,A-Z]’).

2.3.1.1 Question mark (?)

2.3.1.2 Star/Asterisk (*)

2.3.1.3 Hash mark (#)

2.3.1.4 Square brackets ([])

2.3.1.5 Parentheses and the vertical bar

2.3.1.6 Tilde (~)

2.3.1.7 Percent sign (%)

2.3.1.8 Apostrophe (’)

lha 14 / 54

1.27 Question mark (?)

The question mark matches any one _single_ character. The question mark
is sometimes also referred to as the ‘wildchar’.

EXAMPLE

‘d?’ : matches all two-letter names beginning with a ‘d’
character. For example ‘dm’ or ’d8’.

‘ab?d’ : matches all four-letter names beginning with ‘ab’ and
ending in ‘d’. For example ‘abcd’, ‘abad’ and ‘ab_d’
but not ‘abd’ or ‘acid’.

‘f??’ : matches all three-letter names beginning in ‘f’. For
example ‘foo’, ‘fel’, ‘fan’ but not ‘ab’, ‘fuga’ or
‘fini’

1.28 Star/Asterisk (*)

The star matches any sequence of any length, including sequences with
length zero (i.e. the null string). The ‘*’ character is often called
the ‘wildcard’ character.

EXAMPLE

‘a*’ : matches all names starting with an ‘a’, for example
‘abba’, ‘anette’.

‘a*z’ : matches ‘auugaz’, ‘awacz’ and ‘az’ and any other names
starting with an ‘a’ and ending in ‘z’.

‘s*f*n’ : matches ‘stefan’, ‘staffan’, ‘steffen’, ‘sfn’ or any
other name starting with an ‘s’, followed by any number
(including zero) of arbitrary characters, followed by
an ‘f’, and ending in ‘n’.

‘*.lzh’ : matches all names ending in ‘.lzh’

1.29 Hash mark (#)

The hash mark matches a subsequent expression (pattern) 0 or more times.
The simplest example of this is ‘#?’ which will match any filename
(equivalent to the ‘*’ token).

EXAMPLE

‘#a’ : matches any name consisting of the ‘a’ character only.
For example ‘aaaa’ and ‘a’.

‘b#ad’ : matches any name beginning in ‘b’, followed by any
number (including 0) of ‘a’ characters, and ending in

lha 15 / 54

‘d’. For example ‘bad’, ‘bd’ and ‘baaaad’.

‘#(ha)#(hi)urgh’ : matches any number of ‘ha’:s followed by any
number of ‘hi’:s followed by ‘urgh’. For example
‘hahahahahihiurgh’ matches, and so does ‘haurgh’ and
‘hahiurgh’.

1.30 Square brackets ([])

The square brackets enclose a set of characters to match. They are a
bit like the parentheses but match single-characters only. You can
either specify just the letters you would like the expression to match,
as in ‘[abcx]’ (this would match ‘a’, ‘b’, ‘c’ and ‘x’), or you can
specify ranges, like ‘[a-c,x-z]’ (which would match ‘a’, ‘b’, ‘c’ and
‘x’, ‘y’, ‘z’).

EXAMPLE

‘prg.[1-9]’ : matches any five-letter name beginning with
‘prg.’, followed by a non-zero digit. For example
‘prg.1’, ’Prg.8’.

‘Ver_[1-2].[0-9].[a-z]’ : matches any nine-letter name
beginning with ‘ver_’ followed by either a ‘1’ or a ‘2’
character, followed by a dot (‘.’), a digit and finally
a character between ‘a’ and ‘z’ (i.e. all letters in
the english alphabet). For example ‘Ver_1.2.a’,
‘Ver_2.9.d’.

‘#[a-z 0-9]’ matches any name containing any number of
alphanumeric characters (i.e. either in the alphabet
or numeric). For example ‘ados’ or ‘PDP11’. It does
not match ‘AXE.dat’ however, since it contains a ‘.’
which is not in the specified character range.

‘*.[chas]’ : matches any name ending in ‘.c’, ‘.h’, ‘.a’ or
‘.s’.

1.31 Parentheses and the vertical bar

Parentheses can be used to achieve several things. The first way of
using them is just like in mathematics - to group several individual
expressions into one single expression. The other way is to provide a
list of acceptable expressions separated with ‘|’ chars. The entire
parenthesized expression is treated as one token by other tokens (like
‘#’ and ‘~’). These two are actually the same, since the first is just
a special case of the second use. This is easier to explain with a
couple of examples:

EXAMPLE

‘(abc|def|xyz)’ : will match names ‘abc’, ‘def’ and ‘xyz’ and

lha 16 / 54

no other.

‘*.(doc|prf|man)’ : will match all names ending in ‘.doc’,
‘.prf’ or ‘.man’.

‘~(pfile)’ : will match all names except ‘pfile’. (NB: this
expression is NOT the same thing as ‘~pfile’, see
section 2.3.1.6 for details.)

‘(*.c|*.h|*.doc|ab*)’ : will match all files ending in ‘.c’,
‘.h’ or ‘.doc’ and all files beginning with ‘ab’.

Typing an action-file spec of ‘(xxx|yyy|zzz)’ is functionally equivalent
to writing ‘xxx yyy zzz’ (xxx, yyy, zzz can be any valid patterns,
including patterns with parentheses).

Parentheses can be nested.

1.32 Tilde (~)

The tilde negates the immediately following expression. It negates ONLY
the immediately following token or paranthesized expression, not the
entire following expression as some people think.

EXAMPLE

‘~x?’ : matches any two-letter name except those starting with
‘x’. For example ‘ah’, ‘ko’ or ’ba’ but not ’x0’ or
’xi’.

‘~(x?)’ : matches anything except two-letter names starting
with ‘x’. For example ‘xaa’ or ‘ab’ but not ‘xa’ or
’x9’.

‘~(#?)’ : matches nothing at all. (The tilde negates the
‘#?’, which matches all names).

‘~lha’ : matches all strings that doesn’t begin with ‘l’, and
ends in ’ha’. For example ‘uha’, ‘why_lha’ but not
’lumbha’ or ’lha’.

1.33 Percent sign (%)

The percent sign represents the empty string. i.e. it matches 0
characters always. It is only useful in parenthesized expressions and
must not follow a the ‘#’ token (‘#%’ would be a rather pointless
pattern, since the % always matches exactly 0 characters).

EXAMPLE

‘lha(.doc|.man|%)’ : matches ‘lha.doc’, ‘lha.man’ and ‘lha’.

lha 17 / 54

‘l%u%a’ : matches ‘lua’ only; the percent signs are totally
irrelevant here and may just as well be omitted.

1.34 Apostrophe (’)

The apostrophe cancels out the effect of the following wildcard character.
This is useful if your filename contains characters like ? etc. It works
on the following characters: ?*#[]()~%’

EXAMPLE

‘hello’?’ : matches only the filename ‘hello?’.

‘lha’**’ : matches any filename which starts with ‘lha*’.

‘a’’b’’c’ : matches the filename ‘a’b’c’. Two apostrophes together is
treated as a single one.

1.35 National characters

LhA correctly converts national characters to lower- or uppercase using
the current ’Locale’ setting, by calling functions in locale.library.

See also chapter 2.5.56 "‘-Qn’ Set national character mode".

1.36 Commands

This section describes the commands for archive ←↩
manipulation and

maintenance LhA provides. See section 2.1.2 (Specifying commands) for
details on how to specify commands on the command line.

2.4.1 ‘a’ Add files to archive

2.4.2 ‘c’ Concatenate/Append archives

2.4.3 ‘d’ Delete files from archive

2.4.4 ‘e’ Extract files from archive

2.4.5 ‘f’ Freshen files in archive

2.4.6 ‘h’ Hunt for diffs arc <-> filesys

2.4.7 ‘l’ List archive contents (terse)

2.4.8 ‘m’ Move files to archive

2.4.9 ‘p’ Print files to stdout

lha 18 / 54

2.4.10 ‘r’ Replace files

2.4.11 ‘t’ Test archive integrity

2.4.12 ‘u’ Update archive

2.4.13 ‘v’ List archive (verbose)

2.4.14 ‘vv’ List archive (full)

2.4.15 ‘x’ Extract files with path

2.4.16 ‘y’ Copy archive with new options

1.37 `a’ Add files to archive

Obviously, this command adds a number of files to one or more archives.
If the specified archive does not already exist, then it will be
created. You cannot add files to an archive if these already exist in
the archive. If you attempt to do so, a warning will be issued, but LhA
will continue adding the other files you have specified.

Only the filenames are stored by default, if you want to preserve some
disk structure and directory names, you will have to use the -x option
to turn path preservation on. If you want to archive entire
subdirectories recursively you can use the -r option, which will turn on
the -x option automatically. These options are explained in section
2.5.

EXAMPLE

‘LhA a myarchive dict.txt’ would add the file ‘dict.txt’ to the
archive ‘myarchive.lha’.

‘LhA a arc.lzh *.c *.h’ would cause all files in the current
directory ending in ‘.c’ or ‘.h’ to be added to the archive
‘arc.lzh’

‘LhA -r -0 arch *.c’ would cause all ‘.c’ files in the current
directory and all it’s subdirectories to be added to the archive
‘arch.lzh’ using the -lh1- (LhArc 1.x) compression method.

‘LhA -r archive src:(lharca|lha)/*.[cha] asrc:*.asm’ would cause all
‘.c’, ‘.h’ and ‘.a’ files in the ‘src:lharca’ and ‘src:lha’
directories and subdirectories, as well as all ‘.asm’ files in the
‘asrc:’ directory, to be added to the archive ‘archive.lha’.

1.38 `c’ Concatenate/Append archives

With this command it is possible to concatenate several archives to one
or to append several archives to the end of another. Currently, LhA

lha 19 / 54

does not check for duplicate files, so if two archives contain a file
with the same name there will be two entries with the same name in the
resulting archive.

Concatenating and appending works just as if you had extracted all files
from the archives and then moved them all to the destination archive -
except that there is no decompression/compression involved in the
operation.

To combine (concatenate) several archives into a new archive you specify
a non-existant or empty archive as the working archive - this file will
then contain the resultant archive.

To append archives to the end of an archive, specify the archive to
append to as the working archive - the remaining archives will then be
appended to this archive.

EXAMPLE

‘LhA c ram:new arc:csrc arc:csrc2’ would combine the two archives
‘arc:csrc.lha’ and ‘arc:csrc2.lzh’ into one archive named ‘ram:new.lha’.

‘LhA c arc:csrc arc:csrc2’ would yield the exact same result as the
above command but the resulting archive is in ‘arc:csrc.lha’ instead
(‘csrc2.lzh’ is appended to the end of ‘arc:csrc.lha’).

Note that you can use wildcards to specify the files to append /
concatenate.

1.39 `d’ Delete files from archive

This command removes one or more files from an archive. Please note
that the message about ‘packing’ does not mean that LhA compresses the
files once more.. Just that it removes the unused files from the
archive (packs the remaining files closer).

NOTE

Files deleted with the ‘d’ command cannot be recovered
from the archive file in any way. Once a file is
deleted from an archive it is gone forever.

1.40 `e’ Extract files from archive

This command is used to extract files from an archive. It works just
like the ‘x’ command, except this command takes the ‘-x’ option into
consideration (the ‘x’ command assumes it is set). If the ‘-x’ option
is disabled, files are extracted without their pathnames, and if it’s
enabled LhA will extract all files with the pathnames and create the
needed directories if they do not already exist.

lha 20 / 54

EXAMPLE

‘lha -x0 e foo.lzh ram:’ will extract all files from the archive
‘foo.lzh’ to ram:, without paths (all files will be put in the ram:
root directory).

‘lha x foo.lzh *.c ram:’ will extract all files ending in ‘.c’ to
ram:, with paths - i.e. it will recreate the original directory
structure.

See the tutorial section for more examples

1.41 `f’ Freshen files in archive

This command is used to freshen files in an archive. I.e. replace
older files in the archive with new files from the current directory.
Pathnames are considered unless the ‘-x’ option is disabled explicitly
(with ‘-x0’). This command never adds any files to an archive, it just
replaces those files that have older modification dates than the
corresponding files in the current directory.

EXAMPLE

‘lha f /aab/lha’ will freshen all files in the archive ’/aab/lha.lha’.

‘lha f /aab/fsys *.[ch]’ will freshen all ‘.c’ and ‘.h’ files in the
archive ’/aab/fsys.lha’.

This command automatically enables the ‘-x’ option unless it is
explicitly disabled on the command line with ‘-x0’.

1.42 `h’ Hunt for diffs arc <-> filesys

This command is used to see what files in an archive have been changed
since the files were archived. The ‘-D’ (display type) option has a
special meaning with this command; The listing format is as follows:

‘-D0’ (default) : Each differing file is listed with the name on the
right and a ‘checklist’ on the left with x-es in the appropriate
positions indicating what differs between the archive and the
filesystem. ‘Tm’ means the last modification date differs, ‘Sz’ means
the size is different, ‘Pr’ means the protection bits has changed, ‘Fn’
means the filenote has changed, and ‘Del’ means the file does not exist
anymore.

‘-D1’ : Every differing file is listed with the name on the left
followed by a brief description of what differs. If more than one thing
differs a new line will be used for each differing attribute.

‘-D2’ : As ‘-D1’ but all differing attributes are listed on the same
line.

lha 21 / 54

‘-D3’ : Only the differing filenames are listed, one on each line.

If no directory is specified on the command line, LhA assumes you want
to compare the archive to the current directory. The directory to
compare to is specified the same way as the destination directory with
the ‘e’ and ‘x’ commands.

EXAMPLE

‘lha h arc:utils.lha sys:utilities/’ would compare all files in the
archive ‘arc:utils.lha’ to the corresponding files in the
‘sys:utilities’ directory, reporting all differences.

‘lha -x0 h src:misc #?.c misc:’ would compare all files with names
ending in ‘.c’ in the ‘src:misc.lha’ archive to the corresponding
files in the ‘misc:’ directory.

‘lha h dl:backup’ would compare the files in archive ‘dl:backup.lha’
to the files and directories in the current directory.

1.43 `l’ List archive contents (terse)

This command gives a terse list of the contents of an archive ←↩
file,

including file names (without paths), original and compressed length,
last modification date and compression ratio.

Files with pathnames are indicated by having a ‘+’ character in front of
the name. See example below.

Filenotes are NOT displayed when using this command, use the ‘v’ or ‘vv’
command to display those.

The action file specification is used to determine what files to list.
If no filespecs are given, all files will be listed.

EXAMPLE

1> lha -N l dl:c64new

Listing of archive ’dl:c64new.lzh’:
Original Packed Ratio Date Time Name
-------- ------- ----- --------- -------- -------------

36098 26979 25.2% 20-Oct-91 22:40:16 +Stormlord
482 293 39.2% 20-Oct-91 22:41:36 +Stormlord.info

23016 12100 47.4% 21-Oct-91 08:28:18 PlaySID
-------- ------- ----- --------- --------

59596 39372 33.9% 25-Oct-91 21:22:48 3 files

The ‘+’ (plus) signs in front of the first two names indicate that
the file has a path which is not displayed with the ‘l’ command (use
the ‘v’ or ‘vv’ command to display pathnames as well). The ‘-N’
suppresses the copyright notice.

lha 22 / 54

2.4.7.1 ‘lq’ List archive (terse-quick)

1.44 `lq’ List archive (terse-quick)

This command works just like the ‘l’ command, but the only information
listed is the filenames without paths. Empty directories are displayed
as an empty line.

1.45 `m’ Move files to archive

This command works just like the ‘a’ command, but the source files are
deleted after successfully adding them to the archive.

EXAMPLE

‘lha m includes.lzh src:*.[hi]’ will move all files in directory
‘src:’ having filenames ending in ‘.h’ or ‘.i’ to the archive
‘includes.lzh’.

‘lha m myarc.lzh lhb_log.911012 lhb_idx.911012’ will move the two
specified files (‘lhb_log.911012’ and ‘lhb_idx.911012’) to the archive
‘myarc.lzh’.

1.46 `p’ Print files to stdout

This command works just like the extract (‘e’, ‘x’) commands, but sends
the extracted output to stdout (normally the console or output
redirection file).

1.47 `r’ Replace files

This command works just like the update/add commands but replaces the
files that already exist in the archive regardless of the file
modification time. (Using the ‘u’ command together with the ‘-Qr’
option is equivalent to using this command.)

1.48 `t’ Test archive integrity

This command tests the specified archive’s integrity by extracting the
files they contain to nowhereland, i.e. the data is decompressed only,
not written to any file. This command only works on entire archives,
i.e. you cannot just test one file in an archive. If this command
fails, the archive is corrupted, and a warning return code is returned.

lha 23 / 54

EXAMPLE

‘lha t work:arcs/*’ will check the integrity of all archives in
directory ‘work:arcs’.

‘lha t s:envarc.lzh’ will check the integrity of ‘s:envarc.lzh’

‘lha -R t dh0:*’ will check the integrity of all archives on the
‘dh0:’ volume (‘-R’ = Collect archives recursively).

1.49 `u’ Update archive

As the command name implies, this command updates archives. It adds
files that are not yet in the archive and replaces existing but older
files. The last modification date for files are used to determine which
file is the newest one.

EXAMPLE

‘lha u /aab/lha.lzh *.c’ will update archive ‘/aab/lha.lzh’ with all
‘.c’ files in the current directory.

1.50 `v’ List archive (verbose)

This command works just like the ‘l’ command, but displays ←↩
the full

pathname of the file, while ‘l’ only displays the name node without
path. Another difference between ‘l’ and the ‘v’/‘vv’ commands is that
the ‘l’ command does not show filenotes. Filenotes are displayed on a
separate line with a colon (‘:’) in front of it, just like the AmigaDOS
‘list’ command.

The action file specification is used to determine what files to list.
If no filespecs are given, all files will be listed.

EXAMPLE

1> lha -N v dl:c64new

Listing of archive ’dl:c64new.lzh’:
Original Packed Ratio Date Time Name
-------- ------- ----- --------- -------- -------------

36098 26979 25.2% 20-Oct-91 22:40:16 S/Stormlord
482 293 39.2% 20-Oct-91 22:41:36 S/Stormlord.info

23016 12100 47.4% 21-Oct-91 08:28:18 PlaySID
: New version with ‘equalizers’
-------- ------- ----- --------- --------

59596 39372 33.9% 25-Oct-91 21:22:48 3 files

The ‘-N’ suppresses the copyright notice.

lha 24 / 54

2.4.13.1 ‘vq’ List archive (verbose-quick)

1.51 `vq’ List archive (verbose-quick)

This command works just like the ‘v’ command, but the only information
listed is the filenames including path.

1.52 `vv’ List archive (full)

This command is just like the ‘v’ command, but displays all available
information in a slightly different format. The original and packed
size, last modification date and compression ratio is listed just as
with the ‘v’ command, plus file attributes (‘Atts’), compression method,
file CRC and DOS ID for the OS the files were compressed on. If no DOS
ID is given in the archive (header level < 1), a question mark is
displayed. The most common DOS IDs are ‘A’, ‘U’ and ‘M’, where ‘A’ is
for AmigaDOS, ‘U’ is for **IX and ‘M’ is for MS-DOS. The filename
including path is displayed on a separate line. File notes are
displayed in the same way as the ‘v’ command does it, on a separate line
after the filename. The header level is also displayed, and if any
unhandled extended headers are found, an ‘X’ will be listed after the
DOS ID.

The action file specification is used to determine what files to list.
If no filespecs are given, all files will be listed.

EXAMPLE

1> lha -N vv dl:c64new

Listing of archive ’dl:c64new.lzh’:
Original Packed Ratio Date Time Atts Method CRC L OS
-------- ------- ----- --------- -------- -------- ------ ---- -----
S/Stormlord

36098 26979 25.2% 20-Oct-91 22:40:16 ----rwed -lh1- 2093 2 U X
S/Stormlord.info

482 293 39.2% 20-Oct-91 22:41:36 ----rwed -lh1- 710E 2 U X
PlaySID

23016 12100 47.4% 21-Oct-91 08:28:18 ----rwed -lh5- 89FF 0 ?
: New version with ‘equalizers’
-------- ------- ----- --------- --------

59596 39372 33.9% 25-Oct-91 21:22:48 3 files

The ‘-N’ option suppresses the copyright notice.

1.53 `x’ Extract files with path

This command works exactly the same as the ‘e’ command, but it always
extracts files with paths (i.e. same as using the ‘e’ command with ‘-x’
option on), regardless of the state of the ‘-x’ option.

lha 25 / 54

1.54 `y’ Copy archive with new options

This command takes an archive as input, and rewrites the selected (or
all, if none specified) files with the new options given on the command
line or in environment variables. This can often be useful. A couple
of examples will surely help to clarify;

EXAMPLE

‘lha -H1 y dl:#?’ will convert all archives in the ‘dl:’ directory to
archives with level-1 headers.

‘lha -x0 y ram:files.lha *.c’ will remove all paths from all files
with names ending in ‘.c’ in the archive ‘ram:files.lha’.

NOTE

LhA currently ignores the compression method setting,
so this command cannot be used to re-archive old
-lh1- archives to new -lh5- archives or vice versa.
This will be possible in a future release.

1.55 Options

This section describes the various options that are available ←↩
to you

when using LhA. For a detailed explanation on how to enable/disable
specific options and where you can specify options, see section 2.1.1.
The letters in parantheses indicate what commands the options affect.

Code Commands
----- ------------
(add) a,u,f
(all) all commands
(ext) e,x
(upx) a,u,f,e,x
(upd) a,u,f,d

2.5.1 ‘-a’ (upx) Preserve file attributes

2.5.2 ‘-A’ (upd) Set archive attributes

2.5.3 ‘-b’ (all) Set I/O buffer size

2.5.4 ‘-B’ (upd) Keep backup of archives

2.5.5 ‘-c’ (all) Confirm files

2.5.6 ‘-C’ (ext) Clear arc-bit on extract

2.5.7 ‘-d’ (upd) Archive date=newest file

lha 26 / 54

2.5.8 ‘-D’ (all) Alternate progress display

2.5.9 ‘-e’ (add) Archive empty directories

2.5.10 ‘-E’ (ext) Touch extracted files

2.5.11 ‘-f’ (all) Ignore filenotes

2.5.12 ‘-F’ (all) Use fast progress display

2.5.13 ‘-G’ (ext) Only extract newer files

2.5.14 ‘-h’ (add) Disable homedirectories

2.5.15 ‘-H’ (add) Write header level

2.5.16 ‘-i’ (all) Read filelist from file

2.5.17 ‘-I’ (all) Ignore LHAOPTS variable

2.5.18 ‘-k’ (all) Keep partial files

2.5.19 ‘-K’ (move) Kill empty directories

2.5.20 ‘-l’ (ALL) Make filenames lowercase

2.5.21 ‘-L’ (ALL) Create filelist

2.5.22 ‘-m’ (ALL) No messages for query

2.5.23 ‘-M’ (ext) No autoshow files

2.5.24 ‘-n’ (upx) No byte progress indicator

2.5.25 ‘-N’ (all) No progress indicator

2.5.26 ‘-o’ (add) Only add files with same or newer date

2.5.27 ‘-O’ (add) Only add files with same or older date

2.5.28 ‘-p’ (ALL) Pause after loading

2.5.29 ‘-P’ (ALL) Set task priority

2.5.30 ‘-q’ (ALL) Be quiet

2.5.31 ‘-Q’ (ALL) Alternate option set

2.5.32 ‘-r’ (add) Collect action files recursively

2.5.33 ‘-R’ (ALL) Collect archive files recursively

2.5.34 ‘-s’ (add) Add files with a-flag unset

2.5.35 ‘-S’ (add) Set A-flag on archived files

2.5.36 ‘-t’ (ext) Only new files

lha 27 / 54

2.5.37 ‘-T’ (upx) New and newer files

2.5.38 ‘-u’ (ALL) Make filenames uppercase

2.5.39 ‘-V’ (all) Enable multi-volume archives

2.5.40 ‘-w’ (upd) Set work directory

2.5.41 ‘-W’ (add) Exclude filenames

2.5.42 ‘-x’ (all) Preserve and use pathnames

2.5.43 ‘-X’ (ALL) Do not append suffix

2.5.44 ‘-y’ (all) Always append suffix

2.5.45 ‘-Y’ (add) Store big files with ratio

2.5.46 ‘-z’ (add) Do not compress files

2.5.47 ‘-Z’ (add) Compress archives

2.5.48 ‘-0’ (add) Use LhArc 1.x compression

2.5.49 ‘-2’ (add) Use LhA compression (-lh5-)

2.5.50 ‘-3’ (add) Use LhA compression (-lh6-)

2.5.51 ‘-Qa’ (all) Use simple console I/O

2.5.52 ‘-Qb’ (ext) Test archive before extract

2.5.53 ‘-Qd’ (ext) Delete autoshow files

2.5.54 ‘-Qh’ (add) Set Huffman buffer size

2.5.55 ‘-Qm’ (all) Use filename ’munging’ on progress output

2.5.56 ‘-Qn’ (all) Set national character mode

2.5.57 ‘-Qo’ (all) Ignore options after command

2.5.58 ‘-Qp’ (move) Ignore delete protection flag

2.5.59 ‘-Qq’ (add) Quick add

2.5.60 ‘-Qr’ (add) Skip datestamp check

2.5.61 ‘-Qv’ (all) Set multivolume arc devices

2.5.62 ‘-Qw’ (all) Disable wildcards

1.56 `-a’ (upx) Preserve file attributes

lha 28 / 54

This option, when enabled, will make LhA store and restore file
protection flags. The eight attributes are listed below:

r: Read - This flag is set for files which are readable (a
file is read-protected if the flag is unset).

w: Write - This flag is set for files which are writeable
(a file is write-protected if the flag is unset).

e: Execute - This flag is set for files which are
executable (binary load files or shell scripts must have
this bit set).

d: Delete - This flag is set for files which are
deleteable (a file is protected from deletion if this
flag is unset).

a: Archived - This flag is used by harddisk-backup
programs (and optionally LhA) to indicate what files
have been changed since the last backup. If this flag is
set it indicates that the file is unchanged, and if it
is unset the file has changed since the last backup.
The bit is cleared whenever a write is made to the
file.

p: Pure - This flag is set for binary load files which are
pure (i.e. multitasking reentrant), and can be made
resident with the AmigaDOS ’resident’ or equivalent
command.

s: Script - This flag is set for shell script files.

h: Hold - This flag tells the shell to automatically make
the program resident when it is run. To be able to do this
the p (pure) and e (execute) flags must be set. This flag
is only recognized by the 2.04 - 3.1 shell.

Please refer to an AmigaDOS manual for more detailed explanation of the
various file protection flags.

If the option is disabled (by issuing ‘-a0’ on the command line), the
protection flags are set to ’----RWED’ for all extracted and archived
files. Important: You MUST have this option enabled both when
archiving and extracting to preserve file attributes correctly.

NOTE

Use this option only if you know that the archive has
been compressed or will be decompressed with an Amiga
archiver, since the attribute field format is
different on different operating systems. If you use
archive headers of level 1 or higher you need not
care about this since the archiver then detects what
OS the archive was created on and only uses the
protection flags if it is the native OS. Always
leave this option enabled when using archive headers

lha 29 / 54

of level 1 and higher!

This option is enabled by default when archiving (a,f,u,m) and disabled
by default for all other commands.

1.57 `-A’ (upd) Set archive attributes

When this option is active, LhA will set the file protection flags of
all archives it updates to ‘----RW-D’.

This option is ON by default.

1.58 `-b’ (all) Set I/O buffer size

This option will set the size of the I/O buffers LhA uses when reading
and writing to archive files. You can set the buffer size to anything
from 8KB to 64 KB. Larger buffers normally makes LhA operate slightly
faster (depends on the nature of the archive and what files are
selected).

EXAMPLE
’lha -b64 a archive.lzh hubba’ : Will add file ‘hubba’ to
‘archive.lzh’ using an I/O buffer of 64K.

NOTE

Running LhA with a small I/O buffer on an accelerated
(68020 and up) Amiga will degrade compression /
decompression performance significantly! The default
buffer size of 32KB is enough in most cases, and
works well on an unaccelerated Amiga as well. Also
note that when running LhA and doing all work on some
ram disk, the I/O buffer size is less important, and
it is unnecessary to run with a large buffer. The
default buffer size of 32K is a good choice in most
setups.

The default buffer size is 32K (32768 bytes).

1.59 `-B’ (upd) Keep backup of archives

When this option is enabled, LhA will always keep a backup copy of the
archive whenever a file is removed from it by the delete, update,
freshen or replace commands. The backup archive is named
‘<arcname>.bak’ (note that the ‘.lzh’ or ‘.lha’ suffix is *NOT* replaced
by the ‘.bak’ suffix - rather, the ‘.bak’ suffix is always appended at
the end of the filename).

This option is OFF by default.

lha 30 / 54

1.60 `-c’ (all) Confirm files

When this option is active LhA will ask you for confirmation on all
files and archives that are acted upon.

This option is OFF by default.

1.61 `-C’ (ext) Clear arc-bit on extract

When this option is active LhA will mask the A-protection bit for all
files it extracts. This is useful when extracting files from archives
to a harddisk, since the extracted files would not be recognized as new
or changed files by the backup program if the A-bit was set.

This option is ON by default.

1.62 `-d’ (upd) Archive date=newest file

When this option is active LhA will set the last modification date of
the archive to the same date as the last modified file in the archive.
This more accurately reflects the real age of the archive contents than
the date of the last archive update.

This option is OFF by default.

1.63 `-D’ (all) Alternate progress display

This switch is used to change the look of the byte progress indicator
that LhA displays when it is compressing or decompressing files. There
are several different types of progress indicators, you can specify
which one you want with a digit after the ’-D’ string.

0: This is the default progress indicator, it displays how many bytes
of the file LhA has processed, and how many bytes there are in the
file like this:

(xxxxxxx/yyyyyyy) where x = bytes processed, and y = total bytes in
the file.

1: This progress indicator simply shows a ‘rotating line’ that is
rotated 45 degrees every time the progress indicator display is
updated.

2: This progress indicator shows a percentage of how much of the file
LhA has processed.

3: This progress indicator displays a growing bar that indicates how
much of the file has been processed.

lha 31 / 54

4: This progress indicator displays a gfx fuel gauge in an intuition
window. Perfect for use from a directory utility (such as
Directory Opus) where you don’t need any text output, but still
want to know that LhA is actually working.

EXAMPLE

‘lha -D2 a src *.asm’ will add files to the archive ‘src.lha’ with a
percentage indicator (type 2).

‘lha -D4 x foo’ will extract files, showing a gfx progress bar.

‘lha -q -D4 x foo’ will extract files from the archive ’foo.lha’ with
a gfx progress bar, and NO console output at all.

NOTE

When used with the ‘h’ command this option has a
slightly different meaning. See the section about the
‘h’ command for a detailed explanation.

The default progress indication type is 0.

1.64 `-e’ (add) Archive empty directories

When this option is used together with the ‘-r’ (collect files
recursively) option, LhA will archive all empty subdirectories.

This option is OFF by default (empty subdirectories are not archived).

1.65 `-E’ (ext) Touch extracted files

When this option is enabled, LhA will set the file modification date of
all extracted files to the current time. This can be useful if you do
HD backups by date rather than by archive bit.

This option is OFF by default (the original modification dates are
restored).

1.66 `-f’ (all) Ignore filenotes

When this option is enabled, LhA will not store or restore any
filenotes. There is no real need to do this, since it does not cause
any compatibility problems with other systems because of the way the
filenotes are stored. If problems should arise anyway, try enabling
this option or use headers of level 1 or higher if the target system
supports it.

See the section about compatibility (1.7) for a discussion about this
and other compatibility issues.

lha 32 / 54

This option is OFF by default (filenotes are stored and restored).

1.67 `-F’ (all) Use fast progress display

In this mode LhA uses a different method of display progress. Normally,
LhA emits a linefeed (LF) after each file has been processed, thus
advancing/scrolling the display one line. In this mode LhA only emits a
LF when an error occurs. This is useful if you are testing or
extracting archives with a lot of small files, and the scrolling takes
more time than the actual decompression!

NOTE

If you use the default style progress display on a
very fast Amiga system (68020+), beware that the
scrolling of the screen may actually take more time
than the actual decompression! This is especially
true for archives with many small files. So don’t
use it unless you really _have_ to see what files
have been processed. LhA scrolls the display
whenever an error occurs on a file, so you still can
see when an error occurs (better, even, since the
only filenames that remain on screen after the action
is complete are those that failed!).

If you use the ‘-D4’ display option, this option will
not have any additional effect, since the progress
info is all shown in a separate window, so there are
no extra LFs causing scrolling in any case.

This option is OFF by default (use old style progress indication).

1.68 `-G’ (ext) Only extract newer files

When this option is used LhA will only extract files that already exists
and have a last modification date that is newer than the existing files.

This option is OFF by default.

1.69 `-h’ (add) Disable homedirectories

When this option is enabled, the homedirectory specification feature of
LhA is disabled.

This option is OFF by default (homedirectories are recognized).

lha 33 / 54

1.70 `-H’ (add) Write header level

With this switch you can select which header types to use. The valid
header levels are currently 0, 1 and 2. Please refer to the section
about header levels for a more detailed explanation about the various
header types.

The default header level is 0.

1.71 `-i’ (all) Read filelist from file

With this option you can include an action file list from a file instead
of specifying all action files on a command line.

EXAMPLE

If the file ‘ArcFList’ contains the following lines:

---> Start of ArcFList data (this line is NOT in the file)

LhA.c ArcList.c FSys/*.(c|h|i|asm|prf|man|doc|txt)

---> End of ArcFList data (this line is NOT in the file)

The following command line:

‘lha -iArcFList u /aab/lha.lzh’

Will do the same thing as this command:

‘lha u /aab/lha.lzh LhA.c ArcList.c FSys/*.(c|h|i|asm|prf|man|doc|txt)’

NOTE

This command works almost exactly like entering
the following command line:

LhA ? ???? @file

Thus you can include options in your -i file. The
only difference is that the -i file cannot contain
a destination directory specification while you
can do this with the @file method. The destination
directory will always be taken from the command
line when using the -i option.

See the section about ‘@’(include)-files for an alternate way of doing
this.

1.72 `-I’ (all) Ignore LHAOPTS variable

lha 34 / 54

When this option is specified, LhA will not try to read the defaults
from the LHAOPTS local or global environment variable. Note that this
option is special because it has to be specified directly after a dash
(‘-’) on the command line.

This option is OFF by default.

1.73 `-k’ (all) Keep partial files

This option will, if it’s enabled, prevent LhA from deleting temporary
files when an error occurs. Normally temporary files that fail the CRC
check, cause I/O errors or are interrupted with CTRL-C are deleted
before exiting LhA with an error message. With this option you can force
LhA to keep those (often) partial files. This can be useful when trying
to recover data from corrupted archives - LhA will attempt to extract
the data from the erraneous archive file and put a special filenote on
the file to indicate that it failed the CRC check and probably is
corrupted.

NOTE

Please note that, in the current release, for certain
errors not all data that has been extracted may not be
in the partially extracted file, because of internal
I/O buffering. In this case, set the I/O buffer to
the smallest value possible (8KB) to recover as much
as possible. Because of this, small files may not be
recovered at all. This only applies to LHA (-lh5-)
compression, LhArc compressed files will always have
all extracted data in the partially extracted file.

This option is OFF by default (partial files are deleted).

1.74 `-K’ (move) Kill empty directories

When this option is used together with the move (‘m’) command LhA will
delete all directories that are empty after moving all files to the
archive. Useful for moving an entire subdirectory tree with the ‘-r’
(collect files recursively) option.

This option is OFF by default (empty directories are not deleted).

1.75 `-l’ (ALL) Make filenames lowercase

This option, when active, will cause LhA to convert all filenames to
lowercase. This is useful when extracting files from archives created
on MSDOS systems, whose filenames are all uppercase, which look
completely braindead (IMHO). Use this option to make them look nicer!

lha 35 / 54

EXAMPLE

‘LhA -l x myarc’ will extract all files from ‘myarc.(lzh|lha)’, making
all filenames lowercase.

This option if OFF by default

1.76 `-L’ (ALL) Create filelist

When this option is enabled, it will cause LhA to create a list of the
files it has acted upon (i.e. what files in the last operation that
matched the action file specification you gave on the command line).
The name of the list file must follow immediately after the ‘-L’ string.
If you need spaces in the filename, enclose the name in double quotes.

EXAMPLE

‘lha -Lram:ListFile d src.lzh *.asm’ will delete all files in
‘src.lzh’ with names ending in ‘.asm’ and create a list of the deleted
files in the file ‘ram:ListFile’.

‘lha -L"ram:List File" u src.lzh *.asm’ will update ‘src.lzh’, and
create a list of the files that were added/replaced in the file
‘ram:List File’.

NOTE

The file that this option creates is a plain ASCII
file with every name on a separate line. The files
created by this option are suitable for use as action
or exclude lists for LhA using the ‘@’ or ‘-i’
options.

This option is OFF by default (no filelist created).

1.77 `-m’ (ALL) No messages for query

When this option is active LhA will suppress all queries that normally
are issued before overwriting existing files for example. Enabling this
option will also cause LhA to ignore TelOps (autoshow files). When this
option is on, LhA will behave like you choose the default action in
response to all the queries (yes). This option is automatically enabled
if the standard input is not interactive (if run in the background for
example).

This option if OFF by default.

1.78 `-M’ (ext) No autoshow files

lha 36 / 54

When this option is enabled, LhA will suppress the display of autoshow
files (files with names ending in ‘.displayme’).

NOTE

Autoshow files are also suppressed if one or more of
the ‘-N’, ‘-q’ or ‘-m’ options are enabled.

This option is OFF by default (autoshow files are displayed).

1.79 `-n’ (upx) No byte progress indicator

When this option is enabled, the byte progress indicator is disabled.
LhA will still display what file it is working on however, use ‘-N’ to
disable all progress indication.

This option is OFF by default.

1.80 `-N’ (all) No progress indicator

This option is similar to the ‘-n’ option, but supresses higher-level
progress indication (i.e. the display of what file LhA is bashing). It
also disables the short copyright banner that is printed at each
invokation otherwise.

This option is off by default (file progress indication ON).

1.81 `-o’ (add) Only add files with same or newer date

Not currently implemented (never has been).

1.82 `-O’ (add) Only add files with same or older date

Not currently implemented (never has been).

1.83 `-p’ (ALL) Pause after loading

When selected, this option will cause LhA to pause and wait for the user
to press any key before executing a command. This is useful for users
with floppies, who can then swap disks after LhA has been loaded and is
waiting for a keypress.

This option is OFF by default.

lha 37 / 54

1.84 `-P’ (ALL) Set task priority

This option is used to set the LhA process priority. The priority may
be set to any value in the range -5 to +5, including 0. The higher
priority you give LhA, the more CPU time it will grab (processes with
lower priority will almost never get the chance to run since LhA is very
processor-intensive). Setting it to a low value (like -5) will make LhA
only use the processor time that nobody else wants (nice when running
LhA as a background task while running a comm program).

The priority must be specified with a single (optionally prefixed with a
minus sign for negative priority) digit immediately after the P as in:

EXAMPLE

‘lha -P-1 a nonsense.lzh bogus.txt’ will make LhA add the file
‘bogus.txt’ to the archive ‘nonsense.lzh’, running at priority -1.

The default priority is inherited from the calling process (i.e. the
CLI or program that called Execute()/RunCommand()). This is usually
zero (0).

1.85 `-q’ (ALL) Be quiet

This option will suppress ALL console messages from LhA.

NOTE

This option has no effect on the progress window you will see
with the ’-D4’ option. This was done on purpose, for use by
directory utilities, Installer, or anything else that wants
to run LhA in the background, but still show progress of
LhA’s operation on an archive.

This option is OFF by default.

1.86 `-Q’ (ALL) Alternate option set

This option character (‘Q’) will cause all following option characters
until next space character to be interpreted as extended options. These
are documented at the end of this section.

1.87 `-r’ (add) Collect action files recursively

When this option is used, LhA will recursively collect files from
subdirectories.

EXAMPLE

lha 38 / 54

‘lha -r a ram:disk1 df0:’ will archive all files on the disk in drive
0 to ‘ram:disk1.lha’.

‘lha -r a ram:disk2src df0:*.c’ will archive all ‘.c’ files on df0:
to ‘ram:disk2src.lha’.

‘lha -r a ram:exthup hd:prg/src/ lha/*.[chasi] lhi/*.[chasi]’ will add
all ‘.c’, ‘.h’, ‘.a’, ‘.s’, ‘.i’ files in ‘hd:prg/src/lha’ and
‘hd:prg/src/lhi’ and their subdirectories. The ‘hd:prg/src/’ part of
the names will not be stored in the archive (home directory
‘hd:prg/src/’ was specified).

NOTE

Files that are specified explicitly (i.e. without any
pattern matching) are looked for only in the current
(home) directory, while patterns are used for
matching in all subdirectories. If a directory is
specified explicitly without any following file
pattern (like in ‘lha -r a ram:test sys:l’) it will
be treated as if a ‘/*’ was appended to the directory
name - i.e. all files in the directory and it’s
subdirectories will be archived.

This option is OFF by default. Note that the ‘-x’ option is
automatically enabled when the ‘-r’ option is used. If you do not want
to store pathnames simply specify ‘-x0’ on the command line.

1.88 `-R’ (ALL) Collect archive files recursively

When this option is enabled LhA will search for archive files
recursively using the archive file specification given at the command
line. This works like the ‘-r’ option but for archive files.

EXAMPLE

‘lha -R l dh0:files/a*’ will list the contents of all archive files
whose names begin in ‘a’ in directory ‘dh0:files’ and its
subdirectories.

‘lha -R l *’ will list the contents of all archive files in the
current directory and its subdirectories.

‘lha -R l myarc’ will list the contents of all archives called
‘myarc.lzh’ or ‘myarc.lha’ in the current directory and its
subdirectories.

This option is OFF by default.

1.89 `-s’ (add) Add files with a-flag unset

lha 39 / 54

When this option is active, LhA will only add files which have the A
(for Archived) file protection flag unset. This is useful for doing
incremental backups together with the ‘-S’ option.

This option is OFF by default (add files regardless of file protection
flags).

1.90 `-S’ (add) Set A-flag on archived files

When this option is on, LhA will set the A (for Archived) file
protection flag on all files that are added to an archive. This can be
used to simplify automatic backups when used together with the -s (Add
files without A-flag only). See previous section for more details.

This option is OFF by default.

1.91 `-t’ (ext) Only new files

When this option is active, LhA will not overwrite or replace any files.

NOTE

This option overrides the ‘-T’ option.

This option is OFF by default.

1.92 `-T’ (upx) New and newer files

When this option is active, LhA will overwrite or replace files that
already exists and are older than the current file, and create files
that does not already exist.

NOTE

This option overrides the ‘-t’ option.

This option is OFF by default.

1.93 `-u’ (ALL) Make filenames uppercase

This option, when active, will force LhA to convert all filenames to
uppercase. This can be useful when making archives that are supposed to
be used on MSDOS-Systems running LhArc/LHA. While these have no
problems with extracting files with mixed-case filenames, the pattern
matching routines will not work correctly.

This option is OFF by default.

lha 40 / 54

1.94 `-V’ (all) Enable multi-volume archives

This option enables the multi-volume feature of LhA. Please consult the
section about multi-volume archives for more information. Also read the
section about the ‘-Qv’ option. Further options must be separated from
the ‘V’ by at least one whitespace character. The desired volume size
in KB should be specified after the ‘V’ character. If you want LhA to
automatically detect what volume size it should use, use ‘-Va’ (for ‘use
all available space’).

EXAMPLE

‘LhA -Va a df0:MyArc *.c’ would archive all files in the current
directory with names ending in ‘.c’ to DF0:. If the disk should get
full before the archive is finished, LhA will prompt for a new disk to
be inserted.

This option is OFF by default.

1.95 `-w’ (upd) Set work directory

This option is used to specify what directory LhA should use to store
temporary files. Temporary files are created when adding files to
archives, or when updating an archive in some way (like deleting or
freshening files). The work directory name must be specified
immediately after the ‘-w’ string.

EXAMPLE

‘LhA -wrad:tmp a MyArc.lzh *’ will use the directory ‘rad:tmp’ as
temporary storage location when adding all files in the current
directory to the archive ‘MyArc.lzh’.

By default LhA uses the ‘T:’ directory for temporary files, if this
assign or device does not exist, LhA will use the current directory.

1.96 `-W’ (add) Exclude filenames

This option is not available in the current version.

1.97 `-x’ (all) Preserve and use pathnames

As of LhA V1.30, this option comes in three flavors, which mode LhA will
use depends on the digit (if any) that follows the ‘x’.

‘-x1’ or ‘-x’: When this option is enabled, LhA will use and
preserve pathnames when extracting and archiving files. When
extracting, LhA will create the directories that does not already exist.
Use this option when you want to preserve some directory structure.

lha 41 / 54

This option is automatically enabled when the ‘-r’ option is used.

‘-x2’: In this mode, which is only useful with the extract commands,
LhA will use the full paths of the files in the archive when selecting
files to extract, but disregard them when extracting. Useful when
several files with the same filename (but different paths) exists in the
archive.

‘-x3’: This mode is the opposite of ‘-x2’. LhA disregards paths
when selecting files to extract, but uses them when extracting. Useful
when you’re too lazy to remember the exact name including path.

EXAMPLE

‘LhA -x2 e dl:rexx.lzh examples/Main.c ram:’ would extract the file
‘examples/Main.c’ from the archive to ‘ram:Main.c’.

‘LhA -x3 e dl:src.lzh #?Main#? ram:’ would extract all files with
names containing ‘Main’. Notice that this is not equivalent to the
‘LhA x dl:src.lzh #?Main#? ram:’ since the latter would extract files
like ‘dir/Maindir/file1.h’ as well.

This option is set to ‘-x1’ by default.

1.98 `-X’ (ALL) Do not append suffix

When this option is enabled, LhA will not append an ‘.lzh’ or ‘.lha’
suffix to the given archive name. The default behaviour is to append a
suffix of ‘.lha’ or ‘.lzh’ (suffix is chosen depending on compression
mode) if the name does not already have an extension.

This option is OFF by default (suffixes are appended).

1.99 `-y’ (all) Always append suffix

When this option is enabled, LhA will always append a ‘.lzh’ or ‘.lha’
suffix to the archive name, even when the archive name already contains
a suffix.

This option is OFF by default (a suffix is appended only if there is no
suffix in the archive name already).

1.100 `-Y’ (add) Store big files with ratio

When this option is enabled, LhA will store big files (>32KB) without
compression if compression ratio is lower than 3%. This is because
extraction times of these files are long on slower machines.

This option is OFF by default (all files are compressed).

lha 42 / 54

1.101 `-z’ (add) Do not compress files

This option, when active, will force LhA to store all updated or added
files in the archive without attempting to compress them. Useful for
making fast backups where archive size is of no importance. It is not
advisable to use this option when making archives for distribution via
modem or networks since the archive will end up much larger than if it
was compressed.

EXAMPLE
‘lha -z a foo.lha *.bmp’ Will store all files in the current directory
with a suffix of ‘.bmp’ in the archive file ‘foo.lha’ without
compressing them.

This option is OFF by default.

1.102 `-Z’ (add) Compress archives

This option will cause LhA to attempt compressing already compressed
files.

By default, LhA will not attempt to compress files which are already
compressed (typically archive files or picture files in GIF or JPEG
format). The file type is determined from the suffix, and files with
names ending in ‘.lzh’, ‘.lha’, ‘.zoo’, ‘.zip’, ‘arj’, ‘.arc’, ‘.dms’,
‘.wrp’, ‘.lhw’, ‘.zap’, ‘.pak’, ‘.pp’, ‘.gif’, or ‘.jpg’ are stored
uncompressed.

The reason why already compressed files should not be compressed is that
the number of bytes gained by this is so small that it is not worth the
time spent compressing/decompressing it.

This option is OFF by default.

1.103 `-0’ (add) Use LhArc 1.x compression

This option causes LhA to use the old -lh1- compression method when
updating archives. This compression method is slightly faster than the
normal -lh5- compression but has looser compression and is much slower
to decompress.

When this compression mode is used, LhA defaults to appending a suffix
of ‘.lzh’ when creating archives.

When this option is specified, option ‘-2’ is automatically deactivated.

By default the -lh5- compression is used.

1.104 `-2’ (add) Use LhA compression (-lh5-)

lha 43 / 54

This option causes LhA to use the -lh5- compression method when updating
archives. This compression method is slightly slower than the old -lh1-
compression but has tighter compression and is much faster to
decompress.

When this compression mode is used, LhA defaults to appending a suffix
of ‘.lha’ when creating archives.

When this option is specified, option ‘-0’ is automatically deactivated.

This is the default compression mode.

1.105 `-3’ (add) Use LhA compression (-lh6-)

This option causes LhA to use the new -lh6- compression method when
updating archives. This compression method is slightly slower than the
old -lh5- compression but has much tighter compression and is fast to
decompress.

When this compression mode is used, LhA defaults to appending a suffix
of ‘.lha’ when creating archives.

When this option is specified, option ‘-0’ is automatically deactivated.

1.106 `-Qa’ (all) Use simple console I/O

When this option is enabled LhA will not try to do any fancy stuff like
examining the size of the console window, or turning off or
repositioning the cursor. Enabling this option also disables the byte
progress indicator (like with ‘-n’), since this requires cursor
repositioning.

This option is OFF by default.

1.107 `-Qb’ (ext) Test archive before extract

When this switch is enabled LhA will test an archive’s integrity before
extracting. If the archive fails the integrity check, the archive is
not extracted from at all. Useful in certain FIDO BBS setups.

This option is OFF by default.

1.108 `-Qd’ (ext) Delete autoshow files

When this option is enabled LhA will delete autoshow files after
displaying them.

This option is OFF by default.

lha 44 / 54

1.109 `-Qh’ (add) Set Huffman buffer size

This option can be used to set the size of the buffer used in LHA
compression (default or selected with the ‘-2’ or ‘-1’ options) for
collecting statistics. The size of this buffer affects the compression
ratio in unpredictable ways (you cannot tell with certainty whether a
large buffer will be better or worse). As a general rule, keep this at
the default, but if you are compressing homogenous data with a
relatively fixed relative frequency of symbols (like text files),
setting this to a large value will improve compression. Binaries
generally compress best with the default setting.

The Huffman buffer may be of any size between 4K and 64K and must be
specified immediately following the ‘-Qh’ string, in kilobytes.

EXAMPLE

‘LhA -Qh32 -2 a foo.lha *’ will compress all files in the current
directory using a Huffman buffer size of 32768 (32K) bytes.

‘LhA -Qh4 -2 a foo.lha *’ will compress all files in the current
directory using a Huffman buffer size of 4096 (4K) bytes.

The default Huffman buffer size is 16K.

1.110 `-Qm’ (all) Use filename ’munging’ on progress output

This option will cause all path/filename output to be forced (or
’munged’) to fit the width of your console window, so that LhA progress
lines do not wrap. It will remove path nodes as needed to shorten the
number of characters printed to the console, replacing the removed
portion with an ellipsis (’...’) to signify the removal.

Only full nodes are removed, not partial (won’t turn
‘path/longnode/file’ into ‘path/long.../file’, but ‘path/.../file’), and
it will only show one ellipsis (’...’) no matter how many nodes may be
removed.

If the entire path has been removed down to only the filename, and it
still won’t fit, the filename is simply printed, and a wrap allowed.

EXAMPLE

If an archive contained this path:

long/path/with/many/levels/of/subdirectories/and/a/file

and you only have 40 characters available to display the path, it will
be printed as:

long/path/with/many/levels/of/.../file

NOTE

lha 45 / 54

This option is ALWAYS enabled for the ‘-D4’ progress
mode, to allow paths to fit in the progress window.

This option is OFF by default.

1.111 `-Qn’ (all) Set national character mode

When this option is enabled, LhA will correctly convert national
characters to upper/lowercase. By default LhA does not convert any
characters with the MSB set due to the fact that older (pre-2.1)
filesystems do not correctly handle national characters when computing
hash values. This switch should be used when national filesystems are
used (NOFS/NFFS).

This option is OFF by default.

1.112 `-Qo’ (all) Ignore options after command

When this option is enabled LhA will not search the command line for
options beyond the archive name. This option is useful if you need to
specify files with names beginning in ‘-’.

This option is OFF by default.

1.113 `-Qp’ (move) Ignore delete protection flag

When you enable this option LhA will delete files with the delete
protection flag unset when using the ‘m’ (move) command.

This option is OFF by default (delete protected files are not deleted).

1.114 `-Qq’ (add) Quick add

When this option is enabled, LhA will not scan through the archive
looking for duplicate files before adding to the archive. This can be
useful when adding one file at a time to a large archive, knowing the
archive does not contain a file by the same name (as is the case in some
FIDO BBS setups).

This option is OFF by default.

1.115 `-Qr’ (add) Skip datestamp check

lha 46 / 54

This option, when on, disables the datestamp comparison for the update
(‘u’) and freshen (‘f’) commands, so that the files that already exist
in the archive will be replaced regardless of file modification dates.

This option is OFF by default for all commands but ‘r’.

1.116 `-Qv’ (all) Set multivolume arc devices

With this option you can make LhA use several devices when creating
multivolume archives. LhA will use the devices you specify in sequence
and wrap around to the beginning when the last device has been used.
The devices should be specified WITHOUT a colon directly after the ‘-Qv’
string, separated by commas (‘,’). When using this option you still
have to specify the first device to use in the archive name.

EXAMPLE

‘LhA -Va -Qvdf0,df2,df3 -r a df0:Bak hd:#?’ would create a multivolume
archive starting on df0: and then use df2:, df3:, df0:, df2: and so
on. Notice that we still have to specify ‘df0:’ in the archive name
specification.

1.117 `-Qw’ (all) Disable wildcards

When you specify this option LhA will not do any wildcard matching.
This is useful for adding files with (illegal) names containing wildcard
characters (‘()#?~%|*’).

This option is OFF by default.

1.118 Autoshow files

Autoshow files are files that are displayed automatically to the user
when extracting the file from an archive. LhA determines if a file
should be displayed by looking at the filename; if the filename ends in
‘.displayme’ then the file is displayed unless autoshow files have been
disabled (with the ‘-M’ option). Apart from being displayed on-screen,
autoshow files are extracted just like normal files, without stripping
off the ‘.displayme’ part.

1.119 Residentability

LhA is multitasking reentrant and pure, and it can be made resident with
the standard shell resident commands - ‘resident’ under AmigaOS Shell,
and ‘resi’ under WShell. If you use another shell, please refer to the
shell’s user manual for information about how to make programs resident.

lha 47 / 54

1.120 Multi-volume archives

Multi-volume archives are created simply by splitting a larger ←↩
archive

into smaller files.

2.8.1 Multivolume file names

2.8.2 Making backups with multivolume archives

2.8.3 Extracting from multivolume archives

2.8.4 Listing multivolume archive contents

2.8.5 Updating multivolume archives

2.8.6 Interrupting multivolume archiving

1.121 Multivolume file names

The first file of a multivolume archive is named ‘name.lha’ or
‘name.lzh’. The following volumes are named ‘name.l01’, ‘name.l02’ and
so on. This naming convention has been chosen because certain
brain-damaged filesystems don’t allow long filenames (MSDOS).
Multivolume archives spanning more than 100 volumes are not currently
supported.

1.122 Making backups with multivolume archives

The multivolume capability of LhA can be used to make efficient ←↩
harddisk

backups. In order to do this you will need some formatted floppy disks
(or equivalent) - LhA does not currently format disks while writing. An
example backup command would be:

LhA -r -v9 -Qh64 -Va -Qvdf0,df2,df3 a df0:Backup920712 lha:#?

This would archive all files in the ‘LhA:’ directory/device to disks
starting with drive DF0:, then DF2: and then after using DF3: LhA
would repeat the cycle until the backup is finished.

LhA is somewhat slower than using a dedicated backup program since it
has to go through the filing system instead of writing directly to the
disks. However, LhA offers greater compression than any existing backup
program.

2.8.2.1 Incremental backups

lha 48 / 54

1.123 Incremental backups

Incremental backups are backups where you only backup files that has
been changed since the last backup. In LhA this can be accomplished
like this:

LhA -V -s -S -Qvdf0,df1 -r a df0:Backup920912 Work:#?

This would archive all files on ‘Work:’ that does not have its ‘a’
(archived) bit set (the -s option). After adding a file LhA will set
that file’s ‘a’ bit (the -S option). Whenever a file is written to,
AmigaDOS automatically clears this bit so it will be included in the
next incremental backup.

1.124 Extracting from multivolume archives

When extracting files from multivolume archives, LhA must ←↩
scan the

entire archive from first to last volume. An example command would be:

LhA -V -Qvdf0,df1 x df0:MltArc #?.c

This would extract all ‘.c’ files (#?.c) from the multivolume archive
(-V) ‘MltArc.lha’, alternating between drive df0: and df1:
(-Qvdf0,df1).

2.8.3.1 Restoring incremental backups

1.125 Restoring incremental backups

Incremental backups should be restored starting with the latest backup
(i.e. the newest archives should be restored first). An example would
be:

LhA -V -T -Qvdf0,df1 x df0:Backup920909 work:
LhA -V -T -Qvdf0,df1 x df0:Backup920902 work:
LhA -V -T -Qvdf0,df1 x df0:Backup920821 work:

The ‘-T’ option must be specified so LhA will not try to overwrite any
file that is newer than the one present in the archive (that has already
been extracted from a newer archive).

1.126 Listing multivolume archive contents

Multivolume archives are listed like this:

LhA -V v df0:MyArc

lha 49 / 54

This will list all files in the multivolume archive starting with file
‘MyArc.lha’. At the end of every volume LhA will ask for a new volume
until the end of the archive is reached. Listing of individual volumes
is not supported in the current implementation.

1.127 Updating multivolume archives

In the current version it is not possible to delete, freshen or update
files in a multivolume archive.

1.128 Interrupting multivolume archiving

Don’t interrupt multivolume archiving.

Currently, interrupting an archiving operation will cause the archive to
become slightly messed up. All data will be OK but you will not be able
to add any files to the archive since LhA will prompt you for a
non-existent volume at the end of the archive. This is unavoidable with
the current implementation.

1.129 A bit about headers

A ‘header’ has to be written to the archive for every file in order for
the archiver to know what the files are called, how they were compressed
etc. The original LhArc had a very primitive header layout and had no
good way of storing any machine-specific info like filenotes (I created
a workaround in LhArcA 0.99, by putting the filenote in the filename
field - LhArc and LZ later adopted this method). In **IX LhArc V1.02
the authors introduced a new type of header (level 1 header) that
allowed slightly more info to be stored, but the header length was still
limited to 255 bytes. In LHA 2.13 for MS-DOS a new header type was
introduced - level 2 headers. With this latest header type an arbitrary
amount of information can be stored. LhA can both read and write all
these header types. To select what type of headers to write, use the
‘-H’ option. LHA for MSDOS and LHa for **IX creates level-1 headers by
default. LhA uses level 0 headers by default for compatibility reasons
(LZ and LhArc does not handle level 1 and level 2 headers correctly).
If you want to know what header levels an archive contains, use the ‘vv’
command.

1.130 Some tips for archiving efficiently

If you are going to archive a big bunch of similar or small files - text
files for example - you can improve compression performance greatly by
first creating an archive WITHOUT compression (using the ‘-z’ option),
and then add this file to archive (with compression). As an example I
added a big directory with various sources and some binaries (total 2480

lha 50 / 54

files, 5102117 bytes). this way with:

LhA -z -r a hd:test msrc:

and then compressed it with

LhA -Z -Qh64 a hd:msrc hd:test.lha

The final ‘hd:msrc.lha’ archive ended up being 1545076 bytes. When
compressed the normal way (‘LhA -r -Qh64 a hd:msrc msrc:’), the archive
was 2114777 bytes long. Quite a difference..

1.131 Using as little memory as possible

When using the default settings, LhA requires about 300KB to archive,
and 180KB to extract files. To reduce this to a minimum you can reduce
the I/O buffer size to 8K. This will save you about 48K when archiving
and at least 24K when extracting. You can reduce the archiving memory
usage even more by reducing the Huffman buffer size to 4K, but it is not
recommended since compression performance will drop significantly.
Please note that the above figures for memory usage include stack and
program code.

1.132 Creating fully MS-DOS compatible archives

In order to satisfy MSDOS archivers, you may have to disable a few
Amiga-specific features. Filenotes are not supported under MSDOS and
thus the filenote archiving should be disabled with the ‘-f’ option.
Furthermore you should disable file attribute preservation with the ‘-a’
option. Autoshow files are not supported by MSDOS LHA V2.13. If you
use header level 1 or 2 you don’t have to worry about disabling the file
attribute preservation. LHA V2.13 for MSDOS and LHa 0.04 for **IX
creates level 1 headers by default.

To summarize, use the following options to create archives for use with
MSDOS LHA:

‘-UH0a0f’

In order to create archives that are extractible with LhArc the
following options should be used when creating archives:

‘-H0 -0’

and for MS-DOS LHarc:

‘-UH0a0f -0’

1.133 Recovering data from corrupt archives

lha 51 / 54

It is never possible to recover all lost data from a corrupt archive,
but you can retrieve as much data as possible by using the ‘-k’ option
and a small I/O buffer (8K). An example would be:

LhA -k -b8 x dl:Corrupt ram:

This would extract as much as possible from the corrupt archive to
‘ram:’.

1.134 Acknowledgements

(Stefan’s original acknowledgements)

Haruyasu Yoshizaki For releasing the source of the original LHA for
MSDOS. The source was used as a reference when
writing this program. No actual code was copied
from this source, rather LhA was written from
scratch for the Amiga.

Haruhiko Okumura For devising the -lh5- and -lh4- compression
algorithms, and for releasing the C source for
these to the public domain. These sources were
used as a reference when writing the 680x0
assembler versions of the compression code. Some
algorithms were replaced with my own faster ones,
but the ideas are the same.

Robert K.Jung For making the feature-packed ARJ for MSDOS, from
which several ideas for commands and features for
LhA were taken.

Paolo Zibetti For making the first LhArc-style archiver for the
Amiga, which made me interested in file archivers
and more advanced data compression techniques.

Roger Nordin Beta tester extraordinaire

Ron Birk For digging out the source codes I needed before I
gained access to InterNet myself - Thanks!

Martin Olsson For supplying me with the source for LhA V2.11,
which was used as a reference. (I wrote the -lh5-
decompression with only the 80x86 source
available.. hard work!)

LhArcA users Big thanks to all of you who registered for LhArcA
and LhA even before the programs were finished
(LhArcA never was, but those who registered will
receive LhI/LhA when it’s finished).

LhA users Big thanks to all who registered so far, and even
bigger thanks to those who reported bugs and
problems with the previous releases - without you
this program would never be what it is now.

lha 52 / 54

The program was developed using the Lattice C Compiler and Assembler on
a 25MHz Amiga 3000. Great compiler, great computer! Furthermore RCS
and MKID were used to simplify the maintenance and development process
greatly.

"Infinities of dreams imploding into one ..."

(Jim Cooper’s acknowledgements)

Stefan Boberg Without whom, I would never have had this program
to play with.

David Tritscher Who worked his magic on the compression code, and
generally helped out with other items as needed.

Martin Baute For proof-reading and translating the .guide to
German.

These docs were originally formatted with a version of ’proff’ (by
Stefan), but were converted to a .guide file "by hand" by myself.

This version of LhA was developed on an A3500 (the pre-production
version of the A3000T) with a PowerUp (060-50MHz/604e-200MHz) board
installed (Jim) and an A1200 (David), using SAS/C 6.5x to compile, and
CPR (Jim) and MonAm (David) for debugging.

The translation was done on an A1200 with PowerUp board
(060-50MHz/603e-240MHz) and the invaluable help of GoldED Studio v5.1.5.
(Martin)

1.135 History

2.1 Jim Cooper & David Tritscher

Fix probs with -Qm & too narrow windows. (Jim)

Final cleanups, etc. before new Aminet release. (Jim)

Set up Web site - lha.warped.com - plain, but functional. (Jim)

AMINET RELEASE

2.0 Jim Cooper & David Tritscher

Got filename ’munging’ working for all progress types. (Jim)

Use Amiga private escape sequences (aWSR, aWBR) to get console
size, instead of ACTION_DISK_INFO packet. Doesn’t block /AUTO
windows any more. (Jim)

Cleaned up docs, documented new features, etc. (Jim)

NEW RELEASE

lha 53 / 54

1.110 Jim Cooper & David Tritscher

A bit more gain on compression. (David)

Added ’-D4’ progress display. (Jim)

Disabled ’-1’ (-lh4-) for compression, since the format is old,
slow, and pretty much worthless. Still support -lh4- on extract,
for support of older archives. (Jim & David)

Changed the Default status of a few of the options, to bring the
operation more in line with the way other versions of LhA (on
UNIX & PC) operate. (Jim)

Changed the way ’inverse video’ is turned off - instead of just
resetting the console to ’normal’, it uses the specific ’inverse
off’ code. Should help those who normally run their console in
non-default modes (eg, different colors, etc.). (Jim)

BETA RELEASE

1.100 Jim Cooper & David Tritscher

Changed algorithms for compression - now compresses smaller than
old LhA, and does it faster! (David)

Added ’-lh6-’ compression format, to catch up with LhA for UNIX.
(David)

Added command line support for ’-lh6-’ usage. (Jim & David)

Fixed _ancient_ bug (crashed LhA 1.3x, 1.5x, etc.) with corrupt
partial archives. (Jim)

Plugged multiple holes in old code that could have resulted in
crashes. (Jim & David)

Updated docs, usage, etc. (Jim)

BETA RELEASE

1.99 Jim Cooper & David Tritscher

Remaining ASM code converted up to C. Start working on changes
to speed up code, fix old (& new :-) bugs, and add new features.

INTERNAL ONLY

1.98 Jim Cooper

Squashed the "doesn’t work with spaces in names" bug a few
people noticed.

Sent directly to folks who reported bugs mentioned as ’fixed’ in
earlier entries, since I couldn’t get this one uploaded to
Aminet.

lha 54 / 54

1.97 Jim Cooper

INTERNAL

1.96 Jim Cooper
<sigh> Too soon, not enough checking, etc... last "fix" broke ^C
handling. Fixed.

1.95 Jim Cooper
Oops. Wasn’t flushing the output buffer for "Overwrite..."
message.

1.94 Jim Cooper
First Aminet release after taking over from Stefan.

<1.94 Stefan Boberg
With many thanks from the Amiga community.

1.136 TODO

(In no particular order.)

- Show progress for ’stored’ files. Stefan’s code never did.

- Change from current buffered I/O to ASyncIO.
- Add "-Q" option to disable ASync, for whatever reason. :-)

- Support changing compression format for ’y’ command.

- Support hard/soft links.

- Document multivolume archiving better.
- Volume swap prompt change.

- -e should cause ’-lhd-’ entries for ALL dirs, to preserve datestamp/attributes.

- Improve compression even more

- Ports to various other ’platforms’, including Windoze, PowerUp, WarpOS, ...

- Localize LhA output. Lots of folks either don’t speak English, or would
just be more comfortable seeing messages in their own language.

- More translated versions of these docs.

- Cancel button for gfx progress... maybe. ^C still works fine on main task,
but that isn’t obvious to GUI users.

- Speedups, tweaks, rest of code cleaned up, etc., etc., etc.

	lha
	index
	LhA User's Guide
	Introduction
	About the manual
	System requirements
	Terminology
	LhA - what is it?
	What is a file archiver anyway?
	Compatibility and Amiga-specific features
	About the author, program history and future
	Reference guide
	Command line syntax
	Specifying options
	Specifying commands
	Specifying archives
	Specifying action files
	Home directories
	Recursive file collection
	Specifying destination directory
	`\@'-files
	LhA limitations
	Obsolete options
	Environment variables
	Pattern matching
	Exactly what is pattern matching anyway?
	Accepted pattern tokens
	Question mark (?)
	Star/Asterisk (*)
	Hash mark (#)
	Square brackets ([])
	Parentheses and the vertical bar
	Tilde (~)
	Percent sign (%)
	Apostrophe (')
	National characters
	Commands
	`a' Add files to archive
	`c' Concatenate/Append archives
	`d' Delete files from archive
	`e' Extract files from archive
	`f' Freshen files in archive
	`h' Hunt for diffs arc <-> filesys
	`l' List archive contents (terse)
	`lq' List archive (terse-quick)
	`m' Move files to archive
	`p' Print files to stdout
	`r' Replace files
	`t' Test archive integrity
	`u' Update archive
	`v' List archive (verbose)
	`vq' List archive (verbose-quick)
	`vv' List archive (full)
	`x' Extract files with path
	`y' Copy archive with new options
	Options
	`-a' (upx) Preserve file attributes
	`-A' (upd) Set archive attributes
	`-b' (all) Set I/O buffer size
	`-B' (upd) Keep backup of archives
	`-c' (all) Confirm files
	`-C' (ext) Clear arc-bit on extract
	`-d' (upd) Archive date=newest file
	`-D' (all) Alternate progress display
	`-e' (add) Archive empty directories
	`-E' (ext) Touch extracted files
	`-f' (all) Ignore filenotes
	`-F' (all) Use fast progress display
	`-G' (ext) Only extract newer files
	`-h' (add) Disable homedirectories
	`-H' (add) Write header level
	`-i' (all) Read filelist from file
	`-I' (all) Ignore LHAOPTS variable
	`-k' (all) Keep partial files
	`-K' (move) Kill empty directories
	`-l' (ALL) Make filenames lowercase
	`-L' (ALL) Create filelist
	`-m' (ALL) No messages for query
	`-M' (ext) No autoshow files
	`-n' (upx) No byte progress indicator
	`-N' (all) No progress indicator
	`-o' (add) Only add files with same or newer date
	`-O' (add) Only add files with same or older date
	`-p' (ALL) Pause after loading
	`-P' (ALL) Set task priority
	`-q' (ALL) Be quiet
	`-Q' (ALL) Alternate option set
	`-r' (add) Collect action files recursively
	`-R' (ALL) Collect archive files recursively
	`-s' (add) Add files with a-flag unset
	`-S' (add) Set A-flag on archived files
	`-t' (ext) Only new files
	`-T' (upx) New and newer files
	`-u' (ALL) Make filenames uppercase
	`-V' (all) Enable multi-volume archives
	`-w' (upd) Set work directory
	`-W' (add) Exclude filenames
	`-x' (all) Preserve and use pathnames
	`-X' (ALL) Do not append suffix
	`-y' (all) Always append suffix
	`-Y' (add) Store big files with ratio
	`-z' (add) Do not compress files
	`-Z' (add) Compress archives
	`-0' (add) Use LhArc 1.x compression
	`-2' (add) Use LhA compression (-lh5-)
	`-3' (add) Use LhA compression (-lh6-)
	`-Qa' (all) Use simple console I/O
	`-Qb' (ext) Test archive before extract
	`-Qd' (ext) Delete autoshow files
	`-Qh' (add) Set Huffman buffer size
	`-Qm' (all) Use filename 'munging' on progress output
	`-Qn' (all) Set national character mode
	`-Qo' (all) Ignore options after command
	`-Qp' (move) Ignore delete protection flag
	`-Qq' (add) Quick add
	`-Qr' (add) Skip datestamp check
	`-Qv' (all) Set multivolume arc devices
	`-Qw' (all) Disable wildcards
	Autoshow files
	Residentability
	Multi-volume archives
	Multivolume file names
	Making backups with multivolume archives
	Incremental backups
	Extracting from multivolume archives
	Restoring incremental backups
	Listing multivolume archive contents
	Updating multivolume archives
	Interrupting multivolume archiving
	A bit about headers
	Some tips for archiving efficiently
	Using as little memory as possible
	Creating fully MS-DOS compatible archives
	Recovering data from corrupt archives
	Acknowledgements
	History
	TODO

